DNA microarray‐based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity
نویسندگان
چکیده
In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain-derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR-enhanced hippocampal functions; a high-throughput whole-genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11-fold compared to WR, resulting in muscular adaptation for the fast-twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up-regulated (>1.5-fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down-regulated (<0.75-fold change) genes. Functional categorization using both pathway- or specific-disease-state-focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down-regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary-RWR-related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing hippocampal functions.
منابع مشابه
Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.
Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntar...
متن کاملNucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour.
We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose ...
متن کاملEffect of Voluntary Training after the Induction of Experimental Autoimmune Encephalomyelitis on Some Myelin-Producing Proteins in Female C57BL/6 Mice
Introduction: The aim of the present study was to investigate the effect of voluntary training period after the induction of experimental autoimmune encephalomyelitis (EAE) on some myelin-producing proteins in C57BL/6 female mice. Methods: In this experimental study first 28 mice, which were 6-8 weeks old, were purchased and were randomly divided into three groups. Exercise activity (n=12), he...
متن کاملVoluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression
Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic ex...
متن کامل[Voluntary wheel running enhances cell proliferation and expression levels of BDNF, IGF1 and WNT4 in dentate gyrus of adult mice].
Adult hippocampal neurogenesis plays important roles in learning, memory and mood regulation. External factors, such as physical exercise, have been found to modulate adult hippocampal neurogenesis. Voluntary running enhances cell proliferation in subgranular zone (SGZ) and increases the number of new born neurons in rodents, but underlying mechanisms are not fully understood. In this study, we...
متن کامل